8.Sequential与模型搭建实战
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899#!/usr/bin/env python# -*- coding: UTF-8 -*-"""@Project :Pytorch_learn @File :Sequential与模型搭建实战.py@IDE :PyCharm @Author :咋@Date :2023/7/4 15:25 """import torchfrom torch.utils.data import DataLoader,Datasetfrom torch.nn import Module,Conv2d,MaxPool2d,Sequential,Flatt ...
7.神经网络
Conv2d1torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
kernel_size (int_ or _tuple) – Size of the convolving kernel
stride (int_ or _tuple, optional) – Stride of the convolution. Default: 1 # 步长
padding (int,_ _tuple_ or _str,_ _optional) – Padding a ...
6.nn.module
example123456789101112import torch.nn as nnimport torch.nn.functional as Fclass Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
最简单的神经网络1234567891011121314151617181920212223242526272829303132#!/usr/bin/env python# -*- coding: UTF-8 -*-"""@Project :Pytorch_learn @File :nn.module.py@IDE ...
5.Transforms
question?
为什么要使用transform?
怎么使用transform?
question1加快运算,使用GPU运算,加快计算速度!
question2123456789101112131415161718192021222324252627282930313233343536373839404142434445#!/usr/bin/env python# -*- coding: UTF-8 -*-"""@Project :Pytorch_learn @File :transform_1.py@IDE :PyCharm @Author :咋@Date :2023/6/29 18:16 """from torchvision import transformsfrom PIL import Imageimage_path = "data\\train\\ants_image\\5650366_e22b7e1065.jpg"image = Image.open(image ...
4.TensorBoard
作用:用于展示某个值或者图像的变换过程
用于展示值的变化1234567891011121314151617181920212223242526272829#!/usr/bin/env python# -*- coding: UTF-8 -*-"""@Project :Pytorch学习 @File :tensorboard.py@IDE :PyCharm @Author :咋@Date :2023/6/29 15:59 """'''from torch.utils.tensorboard.writer import SummaryWriter 报错解决方法:pip install -i https://mirrors.aliyun.com/pypi/simple/ tensorboardXfrom tensorboardX import SummaryWriter'''from tensorboardX import SummaryWrit ...
3.dataset与datalodar
dataset提供一种方式去获取数据及其label
如何获取每一个数据及其label
告诉我们有多少数据
查看pytorch是否可以1import torch
1print(torch.cuda.is_available()) # 查看当前cuda是否可用
1True
查看dataset1from torch.utils.data import Dataset
1help(Dataset) # 用帮助文档查看Dataset
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475Help on class Dataset in module torch.utils.data.dataset:class Dataset(typing.Generic) | Dataset(*args, **kwds) | | An abstract class rep ...