image.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :Pytorch_learn
@File :Sequential与模型搭建实战.py
@IDE :PyCharm
@Author :咋
@Date :2023/7/4 15:25
"""
import torch
from torch.utils.data import DataLoader,Dataset
from torch.nn import Module,Conv2d,MaxPool2d,Sequential,Flatten,Linear
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import torchvision

dataset = torchvision.datasets.CIFAR10("CIFAR10",train=True,transform=transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset=dataset,batch_size=64)
from tensorboardX import SummaryWriter
'''
普通定义
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
self.conv1 = Conv2d(3,32,5,padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32,32,5,padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32,64,5,padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.Linear1 = Linear(1024,64)
self.Linear2 = Linear(64,10)

def forward(self,x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.Linear1(x)
x = self.Linear2(x)
return x

'''


# Sequential定义
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
self.model = Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10),
)

def forward(self,x):
x = self.model(x)
return x

model = MyModule()
print(model)


write = SummaryWriter("log_4")
# write.add_graph(model)
# input = torch.ones((64,3,32,32))
# write.add_graph(model,input)
for i,data in enumerate(dataloader):
image,label = data
print(image.shape)
write.add_graph(model,image)
output = model(image)
print(output.shape)

write.close()
# MyModule(
# (model): Sequential(
# (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
# (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
# (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
# (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
# (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
# (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
# (6): Flatten(start_dim=1, end_dim=-1)
# (7): Linear(in_features=1024, out_features=64, bias=True)
# (8): Linear(in_features=64, out_features=10, bias=True)
# )
# )

png.png