1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
""" @Project :Pytorch_learn @File :moban.py @IDE :PyCharm @Author :咋 @Date :2023/7/15 21:19 """ import torch import torch.nn as nn import torchvision.models as models
backbone = 'resnet50'
class DecoderBlock(nn.Module): """ U-Net中的解码模块
采用每个模块一个stride为1的3*3卷积加一个上采样层的形式
上采样层可使用'deconv'、'pixelshuffle', 其中pixelshuffle必须要mid_channels=4*out_channles
定稿采用pixelshuffle
BN_enable控制是否存在BN,定稿设置为True """
def __init__(self, in_channels, mid_channels, out_channels, upsample_mode='pixelshuffle', BN_enable=True): super().__init__() self.in_channels = in_channels self.mid_channels = mid_channels self.out_channels = out_channels self.upsample_mode = upsample_mode self.BN_enable = BN_enable
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1, bias=False)
if self.BN_enable: self.norm1 = nn.BatchNorm2d(mid_channels) self.relu1 = nn.ReLU(inplace=False) self.relu2 = nn.ReLU(inplace=False)
if self.upsample_mode == 'deconv': self.upsample = nn.ConvTranspose2d(in_channels=mid_channels, out_channels=out_channels,
kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) elif self.upsample_mode == 'pixelshuffle': self.upsample = nn.PixelShuffle(upscale_factor=2) if self.BN_enable: self.norm2 = nn.BatchNorm2d(out_channels)
def forward(self, x): x = self.conv(x) if self.BN_enable: x = self.norm1(x) x = self.relu1(x) x = self.upsample(x) if self.BN_enable: x = self.norm2(x) x = self.relu2(x) return x
class Resnet_Unet(nn.Module): """ 定稿使用resnet50作为backbone
BN_enable控制是否存在BN,定稿设置为True """
def __init__(self, BN_enable=True, resnet_pretrain=False): super().__init__() self.BN_enable = BN_enable if backbone == 'resnet34': resnet = models.resnet34(pretrained=resnet_pretrain) filters = [64, 64, 128, 256, 512] elif backbone == 'resnet50': resnet = models.resnet50(pretrained=resnet_pretrain) filters = [64, 256, 512, 1024, 2048] self.firstconv = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False) self.firstbn = resnet.bn1 self.firstrelu = resnet.relu self.firstmaxpool = resnet.maxpool self.encoder1 = resnet.layer1 self.encoder2 = resnet.layer2 self.encoder3 = resnet.layer3
self.center = DecoderBlock(in_channels=filters[3], mid_channels=filters[3] * 4, out_channels=filters[3], BN_enable=self.BN_enable) self.decoder1 = DecoderBlock(in_channels=filters[3] + filters[2], mid_channels=filters[2] * 4, out_channels=filters[2], BN_enable=self.BN_enable) self.decoder2 = DecoderBlock(in_channels=filters[2] + filters[1], mid_channels=filters[1] * 4, out_channels=filters[1], BN_enable=self.BN_enable) self.decoder3 = DecoderBlock(in_channels=filters[1] + filters[0], mid_channels=filters[0] * 4, out_channels=filters[0], BN_enable=self.BN_enable) if self.BN_enable: self.final = nn.Sequential( nn.Conv2d(in_channels=filters[0], out_channels=32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=1, kernel_size=1), nn.Sigmoid() ) else: self.final = nn.Sequential( nn.Conv2d(in_channels=filters[0], out_channels=32, kernel_size=3, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=32, out_channels=1, kernel_size=1), nn.Sigmoid() )
def forward(self, x): x = self.firstconv(x) x = self.firstbn(x) x = self.firstrelu(x) x_ = self.firstmaxpool(x)
e1 = self.encoder1(x_) e2 = self.encoder2(e1) e3 = self.encoder3(e2)
center = self.center(e3)
d2 = self.decoder1(torch.cat([center, e2], dim=1)) d3 = self.decoder2(torch.cat([d2, e1], dim=1)) d4 = self.decoder3(torch.cat([d3, x], dim=1))
return self.final(d4)
|